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The theory of homogeneous nucleation is developed for a model nonlinear 
bistable chemical reaction driven far from equilibrium (trimolecular Schl6gl 
model). The theory is restricted to the vicinity of the stable/unstable transition, 
where the nucleation barrier is small but nonvanishing. The nucleation rates are 
derived for two types of fluctuations: first, fluctuations due to a homogeneous 
external white noise source, and second, internal chemical fluctuations, 
described by a reastion-diffusion multivariate master equation. In the white 
noise case, a Landau~3inzburg potential can be defined, and the standard 
nucleation formalism can be applied; this is not true for the internal case and a 
new result is used. The inhomogeneous chemical fluctuations, due to the 
coupling between the nonlinear reaction and diffusion, are shown to have an 
influence on the nucleation rate. Quantitative conditions are also given to 
evaluate the possibility of homogeneous nucleation in nonlinear chemical 
systems. 
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1. I N T R O D U C T I O N  

Zaik in  and  Zhabot insk i i  (~) first showed, in 1970, that  the Belousov-  

Zhabot inski i  reactants,  when prepared in a closed Petri  dish, can spon- 
taneously display str iking spatial patterns,  such as targets or spirals. Ever 

since, these structures have been extensively studied and  discussed from 

both  experimental  and  theoretical points  of view (for a thorough review, 

see Vidal and  Hanusse~2)). In  recent years, chemical systems other than the 
BZ react ion have been investigated that  also lead to spatial organizat ion,  
for example, the arsenious ac id- iodate  reaction, (3'4) which appears as one 
of the most  promising.  
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936 Borgis and Moreau 

The mechanism of propagation of the spatial patterns seems well 
understood within the frawework of solitary wave theories for bistable, 
excitable, or oscillatory reactions. (.9) However, the mechanism of their 
creation from an initially uniform medium is still under discussion. Is it 
always a heterogeneous mechanism, due to pieces of dust or of catalyst 
present in solution? Or is there some room for a purelY homogeneous 
nucleation process, initiated by the intrinsic internal fluctuations, which, 
although small, are always present in a macroscopic system? A theoretical 
answer, taking into account internal fluxtuations, has been given by 
Walgraef e ta l .  ~~ in the case of an oscillatory reaction. A careful 
experiment of Vidal et al. m )  using the BZ system does not confirm their 
predictions. As a side result, these authors did not detect any nucleation 
process in excitable conditions when careful filtering of the solution was 
performed. Their observation seems to support the idea of a purely 
heterogeneous mechanism of nucleation, at least in the BZ case, but does 
not give a definitive answer to the problem. 

In this paper, we are interested in deriving a homogeneous nucleation 
rate formula for a chemically metastable system. We develop our theory 
with a simplified model of a bistable chemical reaction, the Sch6gl model; 
we have shown elsewhere (~2) that our approach can easily be generalized to 
multispecies bistable and excitable reactions, as long as some time scale 
separation can be made in the kinetic mechanism. Most nonlinear chemical 
system belong to this category, and the BZ reaction in particular. (~3'~4~ 
Note also that a mixture of iodate and arsenious acid, with an excess of 
iodate, provides a nice example of a one-variable, bistable reaction similar 
to the one of Shl6gl. (15) 

The Schl6gl trimolecular model is presented in the next section. In a 
closed vessel, the theoretical starting point is a reaction-diffusion equation 
(RDE) associating mass transport and nonlinear chemical kinetics in the 
absence of convection. 

In Section 3, we briefly present the deterministic theory of 
nucleation, (16) introducing the concept of nucleation nucleus, which is 
essential for the following stochastic treatment. Many general results given 
here are known in the literature, but have not been applied directly to non- 
linear chemical systems. The deterministic analysis permits us to study the 
growth of the nucleus; however, it clearly does not account for the creation 
of the nucleation nucleus, which is due to the fluctuations: the next parts of 
the paper are devoted to this problem. 

In Section 4, we develop a stochastic theory in order to derive the 
nucleation rate from an initially metastable chemical medium. In a first 
part, we suppose that the source of noise is external, which amounts to 
describing the fluctuation process by a simple multivariate Fokker-Planck 
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equation, with an additive, diagonal noise matrix. Up to this point, our 
theory remains mainly based on the pioneering work of Langer on 
nucleation processes (17'18) and on the results of Landauer and co- 
workers.(16,19) 

In the second part of Section 4, we consider the case of an internal 
fluxtuation mechanism. The adequate level of description this time is the 
multivariate master equation of Nicolic and Prigogine. (2~ This equation 
accounts for inhomogeneous fluctuations due to the internal coupling 
between reaction and diffusion. Using a new generalization of the results of 
Langer to compute the nucleation rate, we find that the inhomogeneous 
fluctuations tend to lower the nucleation barrier, since they are responsible 
for long-range correlations, which have the same spatial extent as the width 
of the nucleation nucleus. 

In the last part of Section 4, orders of magnitude are discussed from a 
chemical point of view. Conclusions are presented in Section 5. 

2. M O D E L  

The second Schl6gl model (21) has been introduced as the minimal 
elmentary mechanism giving rise to chemical bistability. Let A and B be 
two species whose concentrations are held constant, and X a variable 
species. The reaction reads 

A + X ~ 3 X ,  X ~ B  (2.1) 

The first step is a trimolecular one, whose relevance from a chemical point 
of view is open to discussion. It may be understood as the reduction of 
several elementary steps where some quickly varying species have been 
adiabatically eliminated. On the other hand, as will be seen in this paper, 
this simple model permits us to obtain analytical results which can be 
quantitatively applied to more realistic situations (and even to multispecies 
systems~12)). The kinetic equation of reaction (2.1) is 

with 

d x / d t  = g ( x )  = - d V ( x ) / d x  (2.2) 

F ( x )  = - k l x 3 + k2  XA X 2 - k3 x .+. k 4 X B 

X, XA, an xB are the concentrations of X, A, and B respectively. V ( x )  is 
defined as the kinetic potential. 

According to the imposed constraints, here the concentrations of A 
and B, Eq. (2.2) may have three stationary solutions, two of them stable, 
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the third unstable. We suppose in the remaining of this paper that the 
bistability condition is fulfilled, and denote the stable concentrations by 
xl and x 3 and the unstable one by x 2 (x~ < x2 < x3). The kinetic potential 
V(x) has in this case the shape of a double well, with two minima at x~ and 
x3 and a maximum at x2. Furthermore, we assume that x~ is the 
metastable state and x3 the stable one, in the sense that 

V(xl )  < V(x3) (2.3) 

The potential V(x) is given in Fig. 1. If the Schl6gl reaction takes place in a 
closed, one-dimensional vessel, a diffusional term is added to the kinetic 
equation (2.2) and yields the usual reaction-diffusion equation (RDE) 

ax(p, t) ~2x(p, t) 
ot = F(x(p,  t)) + ~ Op 2 (2.4) 

where p is the spatial coordinate and ~ is the Fick diffusion coefficient. It 
will be convenient in the following to work with dimensionless concen- 
tration and time coordinates. If 

u = x/x1, ~ = tire, D = ~ rc  (2.5) 

with rc characteristic time of the reaction, (klx~) -1, the RDE becomes 

~3u(p, t) .. ~ ~32u(p, t) 
Ot - f ( u ( p ,  t ) ) + D  ~p2 (2.6) 

U(x) 

! 
! 
L 

I I ~ I 
X~ X~ ~ X~ x 

Fig. 1. Double-well potential V(x) and ( - - )  small-amplitude-nucleus limit. 
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with 

f ( u )  = (1 - u)(u 2 - u)(u3 - u) = O(1) 

Finally, we also find it convenient to move the concentration origin in the 
metastable state. With the convention 

4 = u - 1 = ( X - X l ) / X l  (2.7) 

the RDE takes the final form 

04 ~ ~2~ 
-~  = t) ~p2 - b~ + a42 - ~3  (2.8) 

with 

b = l f ' ( 1 ) l = ( u 2 - 1 ) ( u 3 - 1 ) ,  a = � 8 9  

3. D E T E R M I N I S T I C  T H E O R Y  

3.1. P r o p a g a t i n g  Fronts  and N u c l e a t i o n  

It is well known (22'23) that the RDE equation (2.8) admits k ink-  
antikink solutions, which can be expressed as 

~(p, t )=~3{1  + e x p [ + _ 6 ( p - p o + v t ) ] } - I  (3.1a) 

with 

43 = �89 + (a 2 - 4 b  ) 1/2] 

62 = ~2/2D, v = - (3b - a~3)/26 
(3.1b) 

These solutions appear  as fronts of constant profile, of width 6 -1 , and 
moving at constant velocity v from the stable state, ~ 3 ,  to the 
metastable one, 4 -- 0 (v is positive when V(0) > V(~3), or, according to our 
notations, when b < 2a2/9). 

In this context, the nucleation of the stable "phase," ~ -= ~3, from an 
initially homogeneous metastable medium can be understood as the spon- 
taneous creation of a kink-ant ikink pair, which later separates in each 
direction. When separated by a certain critical length ~, the kink and the 
antikink form a stationary profile, called a nucleation nucleus ((p),  which 
represents an intermediate solution between the metastable and stable 
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phases. This solution can be determined exactly as the product of a kink 
centered at p = 0  and an antikink at p = - K  (23) (see Fig. 2): 

#(p)=#o[l+exp(fp)]-~{l+exp[-6(p+x)]} ~ (3.2) 

where ~0 is the amplitude of the nucleus and 6 -  ] is the with of the diffusion 
front. Substitution of (3.2) in the RDE (2.8) makes it possible to determine 
the values of the three parameters ~:, 6, and ~o, 

//b \ 1/2 6b 1 In a ~  3(b/2)~/2 
6 = ~ )  , ~O=a+ 3(b/2)~/2, ~= --~ 3(b/2)~/2 (3.3) 

When the kink and the antikink are separated by a distance less than K, 
they tend to annihilate each other, and the concentration profile decays to 
the metastable homogeneous state. On the contrary, when the separation 
becomes greater than ~:, the kink-antikink pair separates and the system 
evolves toward the homogeneous stable state. The nucleation nucleus can 
be interpreted in functional space as a saddle point solution between the 
attraction domains of the metastable solution, ~ = 0, and the stable one, 
~--~. 

f 
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$/  is  

ps jS  
j~ SS s j d  J 
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b -1 ~( p ) 
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1 2 ~p 

Fig. 2. N u c l e a t i o n  nucleus  b-t~(p) as a funct ion  of  the reduced distance  6p, for a =  1 and  
different values  of  the metas tab le  wel l  curvature  b:b = 0.01 ( S A N  limit) ,  b = 0.1, and  b = 0.2. 
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3.2. Small-Amplitude Nucleus Limit 

A limiting case of particular interest is obtained for a vanishing value 
of the kink-antikink distance (~:=0); according to the terminology 
introduced by Bfittiker and Landauer, ~6) this limit is called the small- 
amplitude-nucleus (SAN) limit. The nucleation nucleus becomes 

((p)=__3ba [ l+c~  ~ 3b=~asech2 ( ~ ) P  (3.4) 

This expression can be shown to be a stationary solution of the equation 

8~ _~2r b~+a~ 2 (3.5) 
c~t = u ap- ~ - 

i.e., of the RDE (2.8), when the cubic term has been suppressed. The SAN 
limit amounts to retaining only a small deviation from the metastable state 
(so that ~3~ 42). It is relevant near the marginal case, when b is small, 
b ~ a  2 (but positive, since we are studying the reaction beyond the 
threshold of bistability), which permits us to approximate the potential 
V(~) by its cubic expansion around ~ = 0 up to the unstable concentration 
(~ = x 2 / x l -  1); a more refined analysis based on singular perturbations ~12) 
confirms these considerations. In the present approximation, the stable part 
of the potential is replaced by an infinitely deep well (Fig. 1). The SAN 
theory is adequate to account for the early creation of the fronts, but not to 
describe their further propagation, when the cubic term should be involved. 

The stability study of the nucleation nucleus can then be carried out 
explicitly. Substituting ~(p, t) = ~(p) + ~p(p)e -;~t in the RDE and linearizing 
in ~ leads to the Schr6dinger-like equation 

c32~ 
- D  ~ + [b - 2a((p)]~ = 2~0 (3.6) 

or, according to the expression (3.4) of ((p), 

_ l~02~ .  I1 3 s e c h 2 ( p ) ]  2 #p-----5 + - ~ O = ~ ~P (3.7) 

where lo= 6 - I =  (D/b) ~/2 defines a correlation length (namely the spatial 
extent of the nucleus). Equation (3.7) has explicit solutions~24); there are 
three bound states, given by 
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20 = - ~ b, ~0o(p) = sech 3 

sinh(p/2lc) 
21 = 0, r = cosh2(p/2l~) 

3 1 - 4 sinh2(p/2l~) 
22 = 4 ,  ~2(P) - cosh3(p/2l~) 

(3.8a) 

plus a continuum of unbound states, corresponding to 2k/b = 1 + l~k 2, and 

Ok(P) = e~kP[8iklc + 8ik3l~ - (9 + 24k2l 2) tanh(p/2lc) 

- 30ikl c tanhZ(p/2lc) + 15 tanh3(p/2lc)] (3.8b) 

The stability analysis confirms the intuitive idea that the nucleation nucleus 
represents a saddle point solution in functional space. 2o < 0 corresponds to 
the unstable mode. )~1 = 0 is a Goldstone mode, originating in the trans- 
lational invariance of the nucleus; it is associated with the eigenvector 
d(/dp. 

In this work, we shall not go explicitly beyond the SAN case, although 
a complete analysis from the general formula (3.2) is not especially 
difficult. (12) It is in the SAN limit that the potential barrier between the 
metastable state and the nucleation nucleus is the lowest, and that the 
nucleation is the most probable. In the case of chemical systems, it will be 
seen that the nucleation process is certainly limited to a small range of 
control parameters around the metastable/unstable transition, in which 
conditions the SAN formulism is adequate. 

3.3. Extension to  Higher Space Dimension 

For a space of general dimension (d=  1, 2, or 3), the RDE reads 

~ ( r ,  t) 
a-----~- = D V2~(r, t) +f (~( r ,  t)) (3.9) 

where r is the d-dimensional Cartesian coordinate. For isotropic 
conditions, the solutions only depend on the radial coordinate p, and the 
RDE can be written 

~2~(p' t) P - l ~ ( P ' t ) l + f ( ~ ( p , t ) ) = ~ 3 ~ ( P ' t )  (3.10) 
D L--Ep-F p 

For d = 2 or 3, the p-1 term makes the search for exact analytical solutions 
intricate; approximate kink solutions have, however, been exhibitedJ 25'26) 
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As far as the nucleation nucleus is concerned, a fairly simple variational 
method is available. ~27'28) The RDE can be set in a functional derivative 
form 

or 6~ 
. . . .  (3.11a) 
at 6r 

where 

q~(~) = fv(a) dr{1D[V" r t)] 2 - �89 t) + �89 t) + �88 t)} (3.11b) 

V(d) should be understood as the length L, the surface S, or the volume V 
of the system, for d =  1, 2, or 3. The nucleus is obtained by looking for a 
saddle point of ~b in the space of parameters. In the SAN case, it is sufficient 
to take a trial function that depends only on two parameters, namely the 
amplitude and the width of the nucleus; more explicitly, one takes 

~(p)=#g(p/O)  (3.12) 

where g(x)  stands for an even function, decaying to zero with a width Ax 
of order one. The potential ~b is a function of # and 0, 

(~(#, O) = 7(d) 0 a- 2(�89 #2 + �89 _ l a i 3 0 2 # 3  ) (3.13) 

with 

;5 11 = dx x d-  lg'(x), 12 = dx x d- lg(x)2, I =  f o  dx x a- lg(x)3 

and 7(1)= 2, 7(2)= 2~, 7(3)= 4~. Variation with respect to # and 0 gives 
for the nucleation nucleus 

fi = #(d)b/a, O= O(d)/(D/b) 1/z (3.14) 

For example, it is simple to make the calculations with a Gaussian trial 
function, g ( x ) =  exp(-x2) .  In this case, we find: 

#(1) = 1.47, #(2) = 2.25, #(3) = 3.7 
(3.15) 

0(1)= 1.10, 0(2)= 1, 0(3)=0.87 

Note that, irrespective of the precise expression of g, the nucleation nucleus 
scales as 

( (p )  = (b/a) ((p/lc) 

l c = (D/b)  1/2, ~(x)  = # ( d ) f ( x / O ( d ) )  
(3.16) 
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It will be important in the following to also know the value of the "poten- 
tial" ~b at the saddle point ~(p). It is straightforward to get 

(~(~) = ~p(d) l~ab3/a 2 = ~o(d) Da/2a 2b 3-a/2 (3.17) 

With the Gaussian trial function, we have q~(1)= 1.21 [instead of 1.20 
when using the exact solution (3.4)] and ~p(2)= 8, ~p(3)= 46. 

The stability analysis of the nucleus can be carried out in two and 
three dimensions, in the same way as in one dimension, and  amounts to 
solving a Schr6dinger-like equation similar to (3.7), this time including 
angular contributions, since the deviation from the unperturbed solution 
((p) may not be isotropic. The qualitative aspect of the spectrum is 
unchanged, and is dominated by a negative, unstable mode 2o proportional 
to b, and d vanishing Goldstone modes 21,...,21+d=0. The remaining 
eigenvalues are all positive and proportional to b. In terms of quantum 
mechanics, they describe the continuum of scatering states associated with 
the radial potential V ( p )  = b - 2a~(p). (12'27) 

4. S T O C H A S T I C  THEORY: 
EXPRESSION OF THE NUCLEATION RATES 

4.1. M e t h o d  of Evaluating the Nucleat ion Rates 

The deterministic theory conveniently describes the propagation of 
fronts separating the metastable and stable regions; it also shows that in a 
homogeneous metastable medium the nucleation begins with the emergence 
of a nucleation nucleus. However, a stochastic treatment is necessary to 
study the creation of this nucleation nucleus as an effect of the chemical 
fluctuations of the medium. Following the method introduced by 
Kramers (31) and developed by Langer (17'27) and others, ~29'3~ we will identify 
the nucleation nucleus with a saddle point of the potential in the functional 
space of the concentration distributions. In passing from the metastable 
homogeneous state to the stable one, the system is most likely to cross this 
saddle point (or an equivalent one, corresponding to a translated 
nucleation nucleus); thus, one can estimate the nucleation rate by the 
steady-stade probability current flowing through the saddle point if a 
stationary situation is set up by artificially maintaining the metastable 
phase and evacuating the stable o n e .  (17'37) 

Clearly this method only accounts for the creation rate of the critical 
nuclei at the beginning of the process; however, this step is generally far 
longer than the subsequent growth of the nuclei and thus actually gives the 
time scale of the passage from the metastable to the stable state. 
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4.2. Homogeneous External Noise 

The description of a homogeneous nucleation process requires the 
fluctuation process by which an initially metastable medium can spon- 
taneously develop a nucleus of the stable "phase," which may grow and 
contaminate all the system. 

As a preliminary step, we take the simplest possible stochastic process 
by adding a local homogeneous white noise source to the RDE (2.4). In 
Fokker-Planck language, this statement amounts to starting from an 
equation of the form 

8 ~ Z '  xr) p +sQe~-~x2~ (4.1) ~p({xr} , t) --~Xr r(Xr)+_~ (Xr+l__ 
8t t 

The reactive medium has here been taken as a d-dimensional cube of 
dimension L. It has been coarse-grained in N a cells of dimension 2 = L/N. 
The index r has the meaning of an array of d integers (r 1,..., rd), and locates 
cell "number" r. The deterministic drift in the Fokke~Planck operator is 
the coarse-grained version of the RDE (3.9); for each cell, the sum Z '  runs 
over all adjacent cells, e is the inverse of coarse-graining volume (e 1 is 
equal to 2s for a tube of small section s, 22h for a shallow layer of depth h, 
and 23 for a three-dimensional vessel). Finally, Qe defines the strengh of the 
homogeneous external noise. 

Use of dimensionles variables (2.5)-(2.7) and restriction for the deter- 
ministic part to the SAN approximation (3.5) transforms the FP equation 
(4.1) to 

~p({~r}, /)= r~ ~ 0 ~ ( { ~ r } )  1 
+~xlQ~e 82P({~r}'t)}8~ (4.2t 

where we have introduced the Landau-Ginzburg-type potential 

bs as D ~ ,  ~({~r})-~-E-~zrI~zr'~--~2 (~r+/-- ~r) 2 (4.3) 
r l 

Note that the potential ~ is not normalizable as it stands, since it should be 
understood as a local expansion of the true potential around ~r - 0. We let 
Z account for the complete normalization (quartic terms included), and in 
this context the stationary probability of (4.2) derives from a Landau-  
Ginzburg-type potential 

(4.4/ Pst({'~r}) = ~ e x p  L 8Qe 



946 Borgis and Moreau 

The derivation of the nucleation rate from an equation of this type has 
been given by Langer, (17'18) Brinkman, (29) and Landauer and Swansson, (3~ 
generalizing the work of Kramers for one variable. (3~) The result is 

d ~ e x p  r (4.5) 
k =--~ \ x, / L gQe 

where the notation has the following meaning: 

(i) ~b({(r}) is the value of the potential at the point {(~}, the 
discretized version of the nucleation nucleus ~(r). It is related to the 
functional value r given in formula (3.17) by 

~b( { ~ } ) = (1/2 a) ~b(~) = q~(d)(lc/2)ab3/a 2 (4.6) 

(ii) The factor N is given by 

e 2= 1-I 2;~ 2, 
p>~O tp>~0 

(4.7) 

The 2p are the normal modes of the potential r at {~r}, i.e., the 
eigenvalues of the matrix 

~rr '=  ~2r ({~r}) (4.8) 
~ r  ~ r '  

or, according to the definition (4.3) of r 

~rr ' =  - -~ ~' (g)r+l , r . - -3rr , )+(b- -2a~r)Orr ,  
1 

(4.9) 

This matrix is the coarse-grained, d-dimensional equivalent of the 
SchrSdinger operator (3.6). Along the lines of our previous discussion, we 
have therefore 

20<0, 21..-21+a=0, 2p>0, p>~d+2 (4.10) 

The symbol l--[' in the denominator of ~2 indicates that the null eigen- 
values 21 " '21+a have to be removed from the product. The 2~ ~ are the 
normal modes of the potential r at the metastable state ~r-=0, i.e., 
the eigenvalues of the matrix 

(o) = D 
r," - - -~  Z '  (Or+t,r'--6rr') +b6rr' (4.11) 

l 
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It is easy to prove that 

2~po ) 4D = - ~  s i n 2 - ~ + b ,  
i = 1  

or in the continuous limit N ~ ~ ,  L fixed 

P = (Pl,'--, Pd) (4.12) 

4~ 2 a 
2~p~ b(1 + l~k2), k 2 = L 2 ~ p2 (4.13) 

i = 1  

where lc is again the characteristic length (D/b) m 
Thus, all the eigenvalues 2p ~~ like the 2, are proportional to b. 

Furthermore, the smallest ones (k-~0)  can be taken equa! to b. As a 
consequence, taking away 2~ ~ ~o) d=  b from the numerator in (4.7), �9 " " "-~1 + 

can be expressed as 

= fl(d) b a/2 (4.14) 

The b dependence has been separated, and/~(d) is a now a constant. This 
factor can be calculated exactly in one dimension (16) [ /~(l)= (60)~/2], and 
approximately in two and three dimensions, using semiclassical 
approximations for the continuous version of the Schr6dinger-!ike 
equations (4.9)and (4.11). (12) 

(iii) The factor ~4 describes the contribution of the d null eigenvalues 
of {~brr'}. According to an argument given by Langer (see Ref. 17, Appen- 
dix C), this factor is equal to 

d = { j~a  fLadrEV.~(r)]2}d/2La (4.15) 

Then, if the scaling (3.16) is used, 

d = ~(d) 2 -  d2/2ld2/2 -- a(b/a)aLa 

= ~(d) La2 d2/2 D d 2 / 4 - d / 2 a - d b  3d /x -d2 /4  (4.16) 

with ~(1)= 1.1, 7 (2 )=  8, ~(3)=312.  
Finally, if we take care of the b dependance of 12o 1, the contributions 

that we have described can all be put together in formula (4.5); this gives 
as a final expression of the nucleation rate, expressed here in dimensionless 
z c unit per cm -d, 

k / L d = Pr(d)(e2d) - d/2( Qe/x l ) - a/2 a - d Dd2/4 -- all2 b 1 + 2a- d2/4 

x exp[ - 2q~(d)(~2 a)-  I ( x 1 / Q e  ) Dd/ea2b3 - d / 2 - ]  (4.17) 

8 2 2 / 5 0 / 5 - 6 - 7  
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The factor ~p(d) in the exponential is given by (3.17). The prefactor Pr(d) 
stands for 

1 I,~ol 
Pr(d) = 27z, + d/2 ~-- ~(d) fl(d) (4.18) 

Finally, (e2 d)- 1 is equal to s, h, or 1 if the dimension d is 1, 2, or 3, respec- 
tively. Note that the nucleation rate tends to zero either when b ~ oo or 
b-~0. The limit b ~ 0  applies in the immediate vicinity of the 
metastable/unstable transition, that is, in domain of spinodal decom- 
position, where the theory presented here should not be valid; the decrease 
of k/L d in this limit is reminiscent of the critical slowing-down of 
fluctuations near the transition, which is well known in critical 
phenomena. ~3s~~ On the other hand, in the limit b ~ ~ the argument of 
the exponential (which we shall later call the activation factor and denote 
by A) becomes large and the nucleation process is impossible. The domain 
of nucleation is in fact limited to the case where the activation factor A 
remains of order unity. 

4.3. Internal  Noise 

4.3.1. Mul t ivar iate Master Equation. We now turn to the case 
where the source of noise is an internal one, due to the intrinsic local fluc- 
tuations of concentration of the chemical species. The Brussels school, and 
Nicolis and Prigogine in particular, (2~ have provided a formalism to 
account for internal fluctuations in a diffusing and reacting medium. The 
theory is based on the so-called multivariate master equation (MME). This 
equation holds in the same coarse-grained sense as the multivariate 
Fokker-Planck equation (4.1), and considers that the d-dimensional 
medium has been divided into N d cells of dimension 2 and volume ~ 1. 
Inside each cell, the chemical reaction is described as a birth-and-death 
Markovian process. The diffusion is mimicked by a stochastic jump process 
from cell to cell. In the case of the Schl6gl reaction (2.1), the MME reads 
(here in terms of the concentration xr of species X in cell r) 

OP({Xr}'t) ~r {W(xr__e) p(...,Xr__8,...) e Ot 

- -  [ W ( X r )  -~- W(xr)" ] p( . . . ,  x . . . . .  ) -1- VV~(Xr "Jr- ~') P (  .... Xr + ~','") 

Y,' [ - ( X r + ~ ) p (  .... Xr+t--~,Xr+~,...) 

--Xrp ( .... Xr+l, Xr,...)]~ (4.19a) 
J 
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W(x~) and W(x,) are the birth and death rates per unit volume in each cell 

W ( X r )  = k2X A Xr(N r - -  e )  q- k4x  B 

ff/(x~) = k~ x~(x~ - e)(xr - 2e) + k3x  ~ 
(4.19b) 

If we turn to the dimensionless variables (2.5), the MME becomes 

, @({u~}, t)~r{W(Ur__,)p(...,Ur__,,... ) 

--  [W(Ur)-}.-14J(Ur) ] p (  .... Ur , . . . ) - I -W(Ur+g, ' )  p(. . .  , Urq-g' , . . .  ) 

D ~ ,  [ (u~+e ' )p ( . . . , u~+z-e ' , u~+e ' , . . . )  
+ - Z  t 

- u ~ p (  .... ur+~,u  ..... )3} (4.20) 

with e '=  e/x~ and, according to the definition of the parameters a and b, 

w(u~) = (a + 3) Ur(Ur -- e') + (a + b + 1 ) 

#(u~) = u~(u r - e')(u~ - 2e') + (b + 2a + 3 )Ur 
(4.21) 

Note that w(u) - ff~(u) is, at dominant order in e', the chemical kinetic term 
f ( u )  introduced in (2.6). Furthermore, we define 

Q ( u ) = u 3  + ( a +  3)u2 + ( 2 a + b +  3 ) u + ( a + b +  l)  

= w(u) + ff~(u) (4.22) 

The stationary solution Ps({ur}) of the MME cannot be found by simple 
arguments. It is possible to write it in the form 

p,({ur}) = ( l /Z)  e x p [ - e ' - l U ( { U r } ) ]  (4.23) 

This relation defines the stochastic potential U({ur}) [or U({~r}) if 
the variables ~r = u s -  1 are used], which has to be distinguished from the 
determinisitc potential ~({r given by (4.3b). The potential U is not 
known exactly. However, Lemarchand (32-34) and Lemarchand and 
Nicolis (3s) have derived a systematic method to provide a Taylor expansion 
of U({ur}) around any stationary deterministic solution fir, for example, in 
in our case around the metastable solution fir--1, and around the 
nucleation nucleus solution ~ _= fir = (r + 1. We make extensive use of their 
method in the remainder of this work. However, in order to simplify the 
presentation, we postpone the discussion of the formalism and its 
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application to our particular case (Appendix A). Let us just mention here 
that at first order the theory relates the second derivatives of the stochastic 
potential U to the second derivative of the deterministic potential ~b via the 
formula 

~ U  - 1  -~_ U -  1~ _ G ~..~_ 0 (4.24) 

with 

and 
~2~ 02U 

~rr'=~Ur(~Ur,({Ur})' Srr'=~Ur~igr ({l~r}) 

From a Fokker-Planck point of view, G would be the noise matrix, (36) 
which reads in the case of the reaction-diffusion master equation (4.20) 

O E t O E t (~r+l . .~ r )  l~rl_l,r, (4.25) Grr'=[Q(fir)+--~ , (~r+'+Ur)]C~rr'--~ -ff , 

where Q(u) is fixed by (4.22). 
However, it should be pointed out that the standard Fokker-Planck 

equation that can be derived from (4.20) (2~ is only locally valid in the 
bistable case, and, for instance, does not yield a correct approximation of 
the stationary probability, in contrast to the method used in Appendix A. 

4.3.2. Expression of the Nucleat ion Rates. We now go back 
to the nucleation problem. We have derived elsewhere (3v) an equivalent of 
the nucleation rate formula (4.5), which applies to a general potential or 
nonpotential stochastic equation, and especially to the M M E  (4.20). 
Keeping similar notations as in (4.5), we find 

k= (2n),+a/2'2~ (e')-a/2~exp[--~-~U({~r})] (4.26) 

U({(r}) is clearly the value of the stochastic potential at the nucleation 
saddle point (r. In the prefactor of the exponential, I;tol and ~r have the 
same meaning and value as in formula (4.5), and express the contribution 
of the negative and null eigenmodes of the deterministic potential ~b around 
{ (r }' The factor N" has the same formal expression as ~), 

N ' ' 2 -  ~o(_~ / 17' (4.27) - -  U t, i ~ Jt O)P 
p>~O /p>~O 
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but it involves this time the eigenmodes of the stochastic potential around 
~r-= 0 and ~r -- (r, instead of those of the deterministic potential ~b. 

These different elements being settled, we now turn to the calculation 
of the two distinct parts that constitute the rate formula (4.26), that is, the 
prefactor of the exponential, and the activation factor itself, 
A=e'-lU({~r}). As in the remainder of this paper, we restrict the 
calculation to the SAN limit, where the smallness parameter b will make it 
possible to adopt a perturbational approach. 

4.3.3. Calculation of the Prefactor. The prefactor relies in 
part on the eigenvalues COp of the matrix 

Urr' -~ ( ~2 U / ( ~ p  (~.r')({~r }) 

In order to calculate them, let us start from relation (4.24), expressed at the 
saddle point U r = ( r +  1. In terms of the variables (r, the deterministic 
matrix ~ is given by formula (4.9), and the noise matrix G is 

Grr ,-= Q+Q'(r+-~-(~+(3+2 d . (l"~-~r) •rr' 

D 
~2 (1 +r ~'6r+t.~, (4.28) 

l 
with 

Q=Q(1)=4a+ 2b+8, Q'=Q'(1)=4a+b+12 

Q"=Q"(1)=2a+ 12 

Let ~,~P) be the set of vectors that diagonalize ~, whose continuous, 
complex, one-dimensional version is given by formulas (3.8). Let V and F 
be the matrices [J and G expressed in this new basis, i.e., 

Z ~(rP)~rr '~  q) = )~P (~Pq' Z ~(P)~frr'@~ q') ~- Upq (4.29a) 
r,r' r,r' 

and 

0 7 ) a r t  ' = G q  
r,r' 

In the new basis, the relation (4.24) can be expressed as 

AV-1 + V - 1 A _ F = 0  

or 
v _  l = Vpq 

Pq .~p -[- •q 

(4.29b) 

(4.30) 

(4.31) 
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In the matrix G given by (4.28) we distinguish the homogeneous chemical 
part (at dominant order in b) from the remaining contributions 

or in the ~1/(p) basis 

Grr,=OiOrr,+Prr,, Q ~ = 4 a + 8  (4.32) 

I ' p q  = Q i (~ pq -~- l"I  pq (4.33) 

and we treat the matrix II as a perturbation. This procedure yields, to the 
first order, 

Vpq = 22-----eP & 422 JUlpq (4.34) 
Qi pq Q2i()~p + ,~q) 

Using the usual perturbation theory of symmetric matrices, it is then 
straightforward to obtain the eigenvalues of V (or U). Up to first order 

2 ) ~ p  (1 - Q~lHpp) (4.35) COp = Q--~ 

We show in Appendix B that in this formula, the perturbed term is of order 
b 2, while the dominant term is of order b, so that one can take 

mp= 22p/Qi + o(b 2) (4.36) 

The same perturbation calculation holds for the eigenmodes of the 
potential U at the metastable state, so that 

CO(p ~ 2)~(p~ i + o(b 2) (4.37) 

Now, substituting (4.36)-(4.37) in (4.26) yields, up to dominant order in b, 
the same prefactor as in the external noise formula (4.5). The dimensionless 
noise strengh Qe simply has to be replaced by the internal chemical noise 
parameter Qi = 4(a + 2). Let us recall that this parameter is the value of the 
dimensionless, concentration-dependent chemical noise Q(u)= w(u)+ ~(u) 
taken at the metastable state: u=x/x~ [see (4.22) and 4.28)]. 

In conclusion, we note that the prefactor in formula (4.17) also holds 
in the internal noise case, up to dominant order in the perturbation 
parameter b. 

4.3.4.  Ca lcu la t ion  of  the  A c t i v a t i o n  Factor .  The value of the 
stochastic potential at the saddle point U(~,}) can be obtained by a Taylor 
expansion of U({~r}) around the metastable state ~r =-0, namely 

U({~,})_• ~r +• ~ 7 (4.38) - -  2 ~ ~r '~r '  6 ~ r '~ r '~ r"  
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U ~r ' '  stands for the value of the derivative of U({~}) with respect to 
~r, ~r' .... taken at ~ = 0. The notation used here implies summation over 
index r, r', .... In the following, in agreement with the SAN condition that 
we have supposed to be true up to now, we shall discard terms of higher 
order than the cubic ones. 

As mentioned earlier, Lemarchand and Nicolis (32-35) have developed a 
nice systematic method to calculate the expansion (4.38). In fact, their 
formalism works more conveniently in Fourier space. If 

~r ~" Clr ~ l, Ul/ '  = Urr'  "'" Clr f l r  . . . .  (4.39a) 

with, in d dimensions, 

r=(rl ..... ra), I=(I1 ..... la) 
and 

Cr=exp(2gil~rl+-N"" +ldra.) (4.39b) 

then U({ ~r }) is transformed to 

u( { 4r )) = kU'% I' + O,,, (4.40) 

The terms U H', U H'r' can be determined consistently, as sketched in Appen- 
dix A. Since ff~ is also known, by simple inverse Fourier transformation of 
(r, the summation (4.40) can be fully achieved, at least numerically. 

As a further simplification, we show in Appendix C that the parameter 
b acts once again as a perturbation parameter, so that U({~r}) can be 
expressed in the simple form 

U({(r}) = 2~b({(r}) [1 - ~oi(d)b .qL o(b2)] (4.41) 
Qi 

where ~b({(r}) is the value of the deterministic potential, given by (4.6). 
Here ~0i(d) is a positive coefficient of order one, whose expression is given 
in Appendix C. The term Qi has the same meaning as in the preceding 
section, i.e., Q~ = 4(a + 2). 

The latter relation, when generalized to any point ~r near ~r = 0, 
shows a simple proportionality law between the stochastic and the deter- 
ministic potentials near the marginal transition (b--* 0). In this case the 
stochastic potential is, like the deterministic one, of the Landau-Ginzburg 
type; it is formaly analogous to the one obtained with a homogeneous 
external noice process, formula (4.3), Qe being replaced by the intrinsic 
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parameter Qi. This fact was already recognized by Malek-Mansour 
etal. ~41) using a singular perturbation expansion of the MME near a 
transition. 

When b is increased, it can be seen that the stochastic potential at the 
saddle point is lowered with respect to the result of a simple Landau-  
Ginzburg theory, based on an homogeneous internal noise hypothesis. Far 
from the transition, Malek-Mansour etal. (4~) have shown that the 
inhomogeneous fluctuations build in long-range correlations of order 
lc = (D/b) ~/2, thus of the same size as the extent of the nucleation nucleus. 
On the nucleation point of view, the inhomogeneous fluctuations therefore 
act synergistically and make the formation of the nucleus easier. 

4.4. Final Result  and Discussion.  At this point, whatever the 
internal or external character of the noise, we are able to provide a unified 
formula for the nucleation rate in the SAN limit. We express here all the 
parameters in usual units, i.e., length in centimeters, time in seconds, and 
concentration in moles per liter. From the discussion of the preceding 
section and from (3.17), we get 

~ = Pref. exp _ 2q~(d)(~2a) - 1 ~[X]10 3 

with the prefactor 

(~%)a/2 a ab3- a/2 } 
x Qe,i [1 - q)e,i(d)b] (4.42a) 

Pref = r ~  1 P r ( d )  - ( e 2  a ) - a/2 ( Y [ X ] / 1 0  3 ) a/2 Qs 

X (~"Cc) d2/4 a/2a-dbl +2d--d2~'4 (4.42b) 

and q~e(d)=0, q~i(d)=o(1), X is the Avogadro number, and IX] the 
concentration of species X at the metastable state in moles per liter. Recall 
that ~ is the diffusion coefficient, and Vc is the characteristic time of the 
reaction {% is here (kl[X]2) -1 if kl is expressed in M -2 sec-l}. 

As a conclusion of this section, let us discuss some orders of 
magnitude. As previously mentioned, the chemical nucleation process is 
confined to a range of physical parameters such that the activation factor A 
is of order 1. The condition A ~ 1 corresponds to the domain of spinodal 
decomposition, while for A >> 1, the exponential predominates, and the 
nucleation cannot be observed. Note that, from an experimental point of 
view, the dimensionless parameter b gives an idea of the precision at which 
the external constraints should be monitored near the metastable/unstable 
transition. The numerical evaluation of these quantities shows that the 
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observable nucleation should be limited to sharply defined values of the 
parameters, which makes experimentation quite difficult: the same remark 
usually holds for the nucleation from a metastable state, which has been 
widely studied in the case of phase transitions at equilibrium. (17'27'42"43) 

As a matter of fact, if we take D =  10-Scm2/sec and a ~ l  for 
simplicity, the condition A ~ 1 is translated to 

Q -  1T3/2h3/2 ['-X ] t5 
e,i - c  - L - - J  ~" 1 0 -  d =  3 

Q~.ilzcb2[X]h ,~ 10 -17 d =  2 

Qe, ilr~/2bS/2[X]s,,~ 10 -19 d =  1 

(4.43a) 

(4.43b) 

(4.43c) 

It is difficult to consider here the external noise case, since the noise 
stength Qe is not an intrinsic parameter and should be discussed on the 
basis of a precise experiment. In the internal case, on the contrary, all 
parameters are known (Qi= 4a + 8 ,-~ 12). It can be easily seen that unless 
the product ~a/2. [X] is very small, the nucleation conditions (4.43) imply 
that the control parameter b is itself very small. In the trimolecular Shl6gl 
model, zc is equal to (k1[X] 2) 1, so that the intrinsic homogeneous 
nucleation should be limited to reactions presenting a very fast trimolecular 
step and a large stationary concentration of the active species (except for 
d =  1, where "~c 1/2 '  I X ]  = k7 ~/2 is independent of IX]). As an example, take 
d = 3  and [ X ] = 1 0 - 3 M ;  in order that b > 1 0  3, we should have 
k l >  101~ If kl is not large enough, the condition (4.43a) 
restricts b to a very narrow range around b = 0 and intrinsic homogeneous 
nucleation should be difficult to detect experimentally. Note that for 
models involving several chemical variables (like the Oregonator in 
excitable conditions ~12)) ~c and [X] are more likely to be independent. The 
conditions for the observation of homogeneous nucleation due to intrinsic 
fluctuations are then a fast reaction (small re) and a low stationary concen- 
tration (small IX]). 

5. C O N C L U S I O N  

In this paper we have derived a rigorous formula for the homogeneous 
nucleation rate in a reacting-diffusing medium near its metastable/unstable 
transition. The theory has been given for both an external and an internal 
noise mechanism. The derivation of the nucleation rate for an internal 
stochastic equation such as the MME (4.19) is new, to our knowledge. This 
is important in the sense that the influence of internal noise on chemical 
systems driven far from equilibrium has often been discussed, although few 
quantitative predictions have been given. In many circumstances, it is still 
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an open question whether the chemical structures can be initiated by inter- 
nal noise or not. This question has already been addressed for oscillatory 
reactions, theoretically by Walgraef and co-workers (1~ and experimentally 
by Vidal and co-workers. (1~> The present work has the merit of giving a 
partial answer for bistable (or excitable) systems. On the other hand, it 
could also be useful for other nucleation situations in physical chemistry 
where an internal noise mechanism can be identified. 

Practically, it appears that the nucleation due to the internal chemical 
fluctuations should in many cases be limited to a very narrow range of 
control parameters near the transition, and difficult to see experimentally. 
The external case is certainly more relevant from the practical point of 
view, since any experiment is subject to external disturbances, which easily 
may be greater than the internal fluctuations themselves. Furthermore, 
some attempts have already been made to impose a controlled external 
white noise on a reacting medium. This could be an interesting route to 
follow. 

Finally, we have not treated in this work the problem of 
heterogeneous nucleation, which is certainly important in nonlinear 
chemical systems. It has been welt established that, in certain cases, the 
chemical structures can be initiated by pieces of dust present in solution. 
However, to our knowledge, there are no clear statistical predictions of the 
influence of solid heterogeneities on a nonlinear chemical bistable or 
excitable system. 

A P P E N D I X  A 

We briefly develop the formalism of Lemarchand and Nicolis, (32 35) 
which permits one to obtain an expansion of the stochastic potential 
around any deterministic stationary solution. The theory starts from the 
Hamilton-Jacobi equation associated with the MME (4.20). If p r =  
OU({u,})/Our, the stationary version of (4.20) gives, up to first order in g, 

0=H({u,}, {pr}) 
= 2  W(Ur)(ePr-- 1) + W(Ur)(e-Pr-- 1) 

r 

D Z'  (e Pr+Pr+t__ 1)/4 r (A1) 

We denote by H{~',;;; the successive derivatives of H with respect to u/,uj .... 
and p/Pr '  .... at a stationary point fir [in this case, /~r = 0U({ fir} )/OUr = 0]. 
These derivatives are related by 
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5P{H{ Uj71 } + Hrr, = 0 (A2a) 

+ H{lJ2Uj~/UjTr~ + H{~r , Ufr!} + Hrr,~,, = 0 (A2b) 

and so on. The notation implies summation over conjugate indices. The 
symbol 5 P indicates symmetrized expressions with respect to r, r', and r". 

It is easy to find that 

H r = O  (A3a) 

Hrr'= I Q(ftr)+--~O Et (fflr+l~-Ur)l o r r ' - ~ E  , , (A3b) 

g r r . r , , = - - ~ l  (~lr+l--fftr)(~rr,~r+l,r,,~L~r+l,r,~r,,r--~r+l,r,~r,r, ) (ABe) 

H r - f ' ( h r ) - 2 d  3rj+-j7 ~r+l,j (ABd) 

H{ j '= f"(fir) 6~j 6rj" (A3e) 

H J r r , - - [ Q ' ( d G ) q - 2 d ~ ] ( ~ r j ( ~ r , j  

D 
22 E (~rj ~r',j + l -~ ~r',r + l 6r'j - -  ~rr" 6r + l,j) (A3f) 

l 

Q(ur) and f(ttr) a r e  defined by (2.6), (4.22). It is easy to verify that, in 
terms of the notation used in Section 4.2,//Jr = - ~rj and Hr~, = G~r', so that 
relation (A2a) is equivalent to the relation (4.24), connecting the stochastic 
potential to be deterministic one. 

As far as a homogeneous steady state t~ is concerned, the formualism 
holds more conveniently in Fourier space. With (4.39) and the additional 
convention 

H}~, Z:: = C/lrCtT.lf' HJJ',:'.. C] Cy ... (A4) 

the relations (2) become 

V/l, 
Ut 71 = (A5a) 

2 t + 2 r  

UmUt','Ur, " f l l ' l  " m'm" - 1 ~ { n .  Un,m ' --1 O n o m" 2~ + 2~, + 2~,, 

-~ + H,,n',,,'} (A5b) + H,"~; Un,,m,, 
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with 

D 
)~.= If'(~)l + ~ / z .  

d 

sin2 - ~ ,  n = (nl ..... na) # . = 4  
l ' = l  

From (A3) we get 

H7 = - 21 6 ( l -  n) 

HH,= N-UIQ(fi) + 2 d ~  h#, ] 6(l + l') 

HT"' = f"(fi) 6(n + n' - l) 

I ~ ] H,~ ,=N -a  Q ' ( f i ) + ~ ( p , + # r - # . )  6 ( l + l ' - n )  

(A6) 

Substitution in (A5) gives 

Ul~'= Newt 6(l + l') (A7a) 

utCr . a6(l + l' + l") { 

+ Q'(~)(~otCOr + co~,O)r, + torpor,) 

D 
+ ~ [~ot~o~,(u~ + ~, - ,ur) + cot cor.(#~. + ~r' - #~) 

+ coto)z,,(,ut + ,ur - #t')]~ (A7b) 
) 

with 

~o,= 2 ]f'(fi)l + (D/22)#t (A7c) 
Q(fi) + 2d(O/22) fiVt 

A P P E N D I X  B 

In continuous space variables r, the matrix 12, is transformed to the 
operator G, 

G=Q+Q'~(r)+�89 2 (B1) 

On the other hand, the continuous version of the matrix �9 is the 
Schr6dinger operator (3.7a), whose real eigenvectors scales as 

~(P)(r) = Ic-d/2@p)(x), x ~-r/l~ (B2) 
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so that 

f dx = 6pq (B3a) cp(P)(x) @q)(x) 

Recalling the scaling (3.16) of ~(r), ((r) = (b/a) ((x), the matrix F can then 
be developed as a function of b, according to 

with 

a + 3  = b 26pq + 4 - - ~  f dx (p(P)(x) 5P(x) (/0(q)(x) TC pq 

So, the matrix I is of order b, which justifies formulas (4.35) (4.36). 

(B3b) 

APPENDIX  C 

In order to compute (4.40), we transform it into an integral. The 
continuous version of the definition (4.39) of 6l is 

~ ( r ) = ( L ) a f d k [ e x p ( i k ' r ) ] 6 ( k )  

o r  

6 ( k ) = L  d dr [exp(-- ik-r)J  ((r) 

with 

k = (2n/L)(ll ..... la), r = 2(rl,..., rd) 

The scaling law ((r)= (b/a) ~(r/lc) becomes, for 6(k), 

6(k)=(~)db- - f  

with 

q = l C k ,  x = r / l c  

o r  

(Cla) 

(Clb) 

(C2a) 

6(k) = (lc/L)d(b/a) s(q) (C2b) 
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Note that since ~(r)~/is function of only the radial coordinate p, rY(k) is real 
and only depends on the scalar wavelength k = Lkl, that is, 

~(k) = (lc/L)~(b/a) s(q), q = Iq] (C3) 

On the other hand, the factor U" .... in (4.40) can also be set in a 
continuous form. In the limit N ~  0% L fixed, we obtain 

/~,=4 ~ sin 2~/i 
i~l N 

4~z2 d 
-~-  ~ l 2 = )~2k2 (C4) 

i~l 
using the definition (Clb) of k. Thus, in this limit, the eigenvalues 2 l and co~ 
used in formulas (7) of Appendix A can be written 

,~z = b + Dk 2 

b + Dk 2 (C5) 
col=2 

Q + 2dDk 2 

Recall that for the homogeneous metastable state t /= 1, we have denoted 

f ' (f i )  = - b ,  f"(fi)  = 2a, Q ( ~ ) = 4 ( a + 2 ) + 2 b  
(C6) 

Q ' ( ~ ) = 4 ( a +  3 ) + b  

Furthermore, the correlation length Ic is equal to (D/b) 1/2, so that 2t, col 
can be expressed as 

.~z = .,].(q)=b(1 q_q2) 

col = co(q) = 2b(1 + qZ)/(Q + 2dbq2) (C7) 

q = lck 

We see that, for b small, 

co(q)=Qi~(q)[1 -24 --.~q b ~- O(62)] 

2 2 o1 21] = Q--~ -~  ( l + dq2) b+ 

2 
= Q---~ [(1 + qZ)b - A(q)b 2 + o(b3)] (C8) 

with 

2 ( l + q Z ) ( l + d q 2 )  A(q)  = Q--~ 
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From formulas (A7) we find therefore 

U ''r' = U(q, q', q") 

d 2  = - - N  -~[2a+B(q ,q ' ,q" )b+o(b2)]~(q+q '+q  ") (C9) 

where we have defined 

B(q, q', q")= 2 q2 Q--~[(3+ +q,2+q, ,2)  1 

• { - 2a[(1 + q2)(1 + dq 2) + (1 + q'2)(1 + dq '2) 

+ (l  + q"2)(1 + dq"2)] + 4(a + 3)[(1 + q2)(1 + q,2) 

+(l  +q2)(1+q"2)+(l  +q'2)(1+q"2)]}] (C10) 

Now, with the scaling (3), it is easy to prove that the summation (4.40) can 
be written in the form 

2 b 3 
;~-~./~q,(d) 7 [1 -  q,i(d)b + o(b2)] (Cll) U({6,}) = Q---~ 

with 

~o(d) - (2=)-d fdq(1 +q2)s(q)2 

(21t) -2d ; . ,  
5 j aq dq' dq" s(q) s(q') s(q") 5(q + q' + q") 

1 [(2~z)-d ( dq A(q)s(q) 2 (pi(d) = ~p(d)- [_ 2 3 

(2~z) -2a ] 
4 f dq dq' dq" s(q) s(q') s(q") B(q, q', q") 3(q + q ' +  q") 

The dominant part is exactly 2/Qiclg({(r}), with ~({~r}) being given by 
(4.6). Thus, we recover formula (4.41). 
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